Band gap and stability in the ternary intermetallic compounds NiSnM (M=Ti,Zr,Hf): A first-principles study.
نویسندگان
چکیده
The structural stability and electronic properties of the ternary intermetallic compounds NiSnM (M = Ti, Zr, Hf) and the closely related Heusler compounds Ni2SnM are discussed using the results of ab initio pseudopotential total energy and band-structure calculations performed with a plane wave basis set using the conjugate gradients algorithm. The results characterize the lowest energy phase of NiSnM compounds, with a SnM rocksalt structure sublattice, as narrow gap semiconductors with indirect gaps near 0.5 eV, while the Ni2SnM compounds are described as normal metals. Two other atomic arrangements for NiSnM in the MgAgAs structure type result in energetically unfavorable compounds which are metallic. The gap formation in the lowest energy structure of NiSnZr and relative stability of the three atomic arrangements are investigated within a tight-binding framework and by considering the decompositions of each ternary compound into a binary substructure plus a third element sublattice. The stabilization of the lowest energy phase of NiSnZr is found to be mainly due to the relative stability of the SnZr rocksalt substructure, while the opening of the gap induced by the addition of the symmetry-breaking Ni sublattice makes a relatively minor contribution.
منابع مشابه
Theoretical study of phase stability, crystal and electronic structure of MeMgN2 (Me = Ti, Zr, Hf) compounds
Scandium nitride has recently gained interest as a prospective compound for thermoelectric applications due to its high Seebeck coefficient. However, ScN also has a relatively high thermal conductivity, which limits its thermoelectric efficiency and figure of merit (zT). These properties motivate a search for other semiconductor materials that share the electronic structure features of ScN, but...
متن کاملDFT Study on Oxygen-Vacancy Stability in Rutile/Anatase TiO2: Effect of Cationic Substitutions
In this study, a full-potential density functional theory was used to investigate the effects of Ti substitution by different cations. In both rutile and anatase, Ti atom was replaced by Ce, Au, Sn, Ag, Mo, Nb, Zr, and Y. Phase stability, electronic structure and formation energy of oxygen vacancy were compared for rutile and anatase. The results indicated that substitution of Ce and Zr increas...
متن کاملIrregular Homogeneity Domains in Ternary Intermetallic Systems
Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing t...
متن کاملResolving the true band gap of ZrNiSn half-Heusler thermoelectric materials
Band structure parameters, such as the band gap, can be estimated using electrical transport properties. In many thermoelectric studies, the temperature dependent Seebeck coefficient is used to estimate the band gap using the Goldsmid–Sharp band gap formula: Eg 1⁄4 2eSmaxTmax. This important, fundamental parameter is useful for characterizing and understanding any semiconductor, but it is parti...
متن کاملPrediction of stable insulating intermetallic compounds
We explore the stability of structure exhibiting hybridization gaps across a broad range of binary and ternary intermetallic compositions by means of band structure and total energy calculations. This search reveals previously unknown metal-based insulators, some with large gaps exceeding 1 eV, such as Al2Fe and Al4IrRe. We confirm large gaps using a hybrid density functional including exact ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. B, Condensed matter
دوره 51 16 شماره
صفحات -
تاریخ انتشار 1995